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where f is a dimensionless w-dependent numerical factor, obtainable from Eq. (6.2.42).
For f ~ 0.5, a typical value, f/fy2 ~ 0.5 x 1078 m. In the last step a “low emittance”
lattice has been assumed, which amounts to neglecting electron angular spreads relative
to photon angular spreads. This approximation is not very bad even for a machine with

gigantic emittances, such as CESR.

Using Eq. (8.3.1) is tantamount to assuming that the detection apparatus accepts
and utilizes the full photon cone angle. In practice, the cone angle would be reduced by
collimation. According to Eq. (6.3.7), this would reduce the solid angle (and hence photon
rate) and energy spread more or less proportionally. The brilliance, a ratio of photon rate
to solid angle, would therefore tend to be more or less independent of collimation angle,
except that, by convention, one is to count only photons in the tenth percent bandwidth.
Because Eq. (8.3.1) has already incorporated the undulator-effect reduction of fractional
energy spread to be of the order of 1/N,, this requirement has already been built into
Eq. (8.3.1). As a result there is really a unique angular collimation compatible with
this formula—that which limits the fractional energy spread to Av = 1073. Since this
formalism is almost certainly different from that employed by others, I will use B’ as its

symbol. B’ is obtained by combining Eqs. (8.2.12) and (8.3.1);

5 F' _ 14 Ly Ry Uy I Pexy, (MW) P N, 1/f
T200 400y 10y yOny gy T2 752 ab  hv e 693.1MW  Pe. 103 \/Bre, /Byey
(8.3.2)

From here on B’ will not be distinguished from brilliance B. As has been emphasized
repeatedly, since “all” the energy is concentrated in the main peak, the total power of the

beam is trivially small.

There are too many uncertain factors to give a definitive numerical value to B. The

main factors multiplying the flux F' to give brilliance B, are

e 1/7% =~ 107!, a factor that accounts for the fact that the bunch ¢’s are one-sided
measures.

o v2 £ 108, As mentioned below Eq. (6.3.7), since the flux has not been de-

rated to account for the angular spread, the brilliance must not be re-inflated

to account for an angular aperture much less than 1/7.
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o (f, /Bxﬁy)_l ‘& 1/m, because f ~ 0.5 and /8,8, ~ om. ¥

o1/ [&r6) = 10! (m-rad)~! for an exceedingly low, but probably achievable
emittance, some 4 times greater (i.e. smaller emittance) than the corresponding
product at ESRF or APS.

e 10712 (22.)2 (L)2 hecause B is conventionally quoted in terms of millimeters

and milliradians, rather than meters and radians.

Combining these values with the flux value given in Eq. (8.2.13) for a 10 m undulator yields

B 3 % 1019 photons/s/0.1%BW /mm?/mr?
0.1A = :

o (8.3.3)

For quantitative comparison with the brilliance achieved or advertised by other storage
rings, one should be sure the assumptions going into the definition of brilliance are consis-
tent. Various factors have been ignored, some making Eq. (8.3.3) too pessimistic (e.g. the
factor 3 in Eq. (6.3.6)) others too optimistic (e.g. the treatment of the collimator, ignoring
the elliptical shape of the beams, and oversimplifying the shape of the upper end of the
undulator energy spectrum.) These uncertainties cause Eq. (8.3.3) to be little better than
an order-of-magnitude estimate.

According to Suller, one of the magnetic undulators at ESRF, operating at 6 GeV.
produces brilliance 1.6 x 101? photons/s/0.1%BW /mm?/mr? at hv = 7.4keV; this would be
reduced by roughly a factor of ten in extrapolating to 12.4 keV. These numbers correspond
to emittances €, = 4 x 1072 m and €y = 4 X 10~ m. The advertised brilliance at hv =
12.4keV, for an undulator in “Protein Crystallography Beamline” of SLS (The Swiss Light
Source) is By4a = 0.5 x 10?photons/s/0.1%BW /mm?/mr2. This line will be known as the
“Protein Crystallography Beamline”. The undulator gap height is (planned to be) 4 mm,
beam energy is 2.6 GeV(?), and Kpax = 1.65.

The brilliance increases only as (m)_l. The reason for this is that the radiation
cone has been assumed to be large compared to the (elliptical) cone of electron angles. It

is necessary to check that this is valid. Because low emittance storage ring designs lead to

{ There is “headroom” for increasing B by decreasing either or both of 8, and 3,. Furthermore, since
the waveguide can pass through the center of focusing magnets, it may be practical to keep §, and 8, small
along the length of even a long undulator.
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(Br) << (By) and €, >> ¢, the only condition that needs to be checked is

% << % . (8.3.4)
The same z,y asymmetry may influence the choice of waveguide dimensions. To increase
X-ray intensity at fixed microwave power there is a premium on reducing the trans-
verse waveguide dimensions. In this paper we have been using width/height = a/b =
4cm/2cm = 2, and will continue to do this. But, in principle the waveguide height could
be reduced without violating condition (8.3.4) or clipping the vertical tails of the beam
distribution.

Another condition to be satisfied is that the spread of “searchlight angles” of the
electron beam passing through the undulator (about K/(37)) should roughly match the
cone angle of a collimator whose purpose is to limit the spread of X-ray energies (about
VAv/y 2 1/(307). This sets a limit K < 0.1. Since flux and brilliance are proportional to
K?, this consideration helps to make the brilliance from the microwave undulator (where
achieving high K is difficult) competitive with the brilliance from a magnetic undulator
(where achieving high K is easy.)

Reducing the horizontal emittance €, improves the X-ray beam brightness, but there
is a value below which diminishing returns set in. A matching condition based on con-
siderations similar to the previous paragraph is that the spread of “searchlight angles” of
the electron beam passing through the undulator (about K/(37)) should not exceed the
spread of electron angles (about \/m .) Accepting this as a strict inequality yields

K2
K<3fy1/;—m, or e > 105;, (8.3.5)
xT

depending on whether the “pinch” comes from K or ¢,. For a long undulator £, may

have to be 10m or greater, in which case, ¢, has to be K2/y2m or greater. For the
Energy Recovery Linac X-ray source that has been under discussion recently, the proposed
emittance is e, ~ 10710, With v being 104, the value of K? should not exceed 0.01. The
flux and brilliance would be therefore be down from the K = 1 values by two orders of

magnitude.



Appendix A.
Trajectory of electron in electromagnetic wave

This paper requires the description of charged particle orbits in a traveling electromagnetic
wave and, for comparison with conventional undulators, the motion also in a periodic
magnetic field. Unfortunately, though the orbits are very similar, the analysis for a periodic
magnetic field cannot be subsumed into the analysis for a traveling wave, even by going to
the zero frequency limit, because there is no frame of reference in which the electric field
of a traveling wave vanishes. This correlates with the fact that energy transfer between
particle and field is possible for a traveling wave, but not for a pure magnetic field. Such
energy transfer is fundamental to the operation of free electron lasers, but is inessential to
the operation of the microwave undulator being discussed in this paper.

Since the electron is highly relativistic, it is essential for relativistically valid formulas
to be used. Fortunatately, exact equations of motion are known! for motion of a charged
particle in an electromagnetic wave.

For an electromagnetic plane wave traveling in direction n, the electric and magnetic

fields are related by
B=-nxE, and B-an=E-n=0. (A.1)

For a monochromatic wave of frequency wyf, dependencies on both position r and time ¢

can be expressed in terms of a single independent (phase) variable
O =wy(t—n-r/c) . (A.2)

For the special case in which the wave is traveling parallel to the positive z-axis, & =
wyt(t — z/c) = wyet — kz, where k is the photon wave number. Later, r will be taken to be
the position of a particle with velocity v = dr/dt, and then

dd

%:wrf(]_—ﬁ'V/C) . (4.3)

t Clemmow, P.C. and Dougherty, J.P., Electrodynamics of Particles and Plasmas, ascribe this theory to
Kolomenskii A.A. and Lebedev A.N., Sov. Phys. Doklady, 7, 7/5 (1963) and Sov. Phys. JETP, 17, 179
(1963).
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In effect, the variable ® locates the particle by giving the instantaneous longitudinal pro-
jection (onto the wave normal) relative to some standard wavefront of the wave. We are
primarily interested in the case in which the electron travels almost anti-parallel to the
wave at almost the speed of light, z = —|v;|t. Then ® = wyt(1 + [7;]/c) ~ 2w,st.

The mechanical energy ymec? of an electron of velocity v is governed by

dry e
—=—E- A4
dt  mc? v (44)
and its equation of motion is
d v e e e
— (v=) = —(E B)=— (1-n- E+— (E-v)n A.
dt (70> mc( +vxB) mc( h-v/e) +m02( v) A (4.5)

By combining these equations one shows that the quantity
L=~v(1-n-v/c), (A.6)

is a constant of the motion. For exactly anti-parallel motion £ =~ 2+.
We now set about changing independent variable from ¢ to ® in the electron’s equation

of motion, using primes to indicate d/d®. Then, using Eq. (A.3),
, dr/dt v

= = . AT
YT A0/dt T wr (1—n-v/o) (4.7)
Differentiating again yields
1 d v
i
_ af__ v\ A
F S o (—h-v/o) dt ((1—ﬁ-v/c)> (4.8)

Using this, after first substituting from Eq. (A.6), the left hand side of Eq. (A.5) can be

rewritten as

and, again using Eq. (A.7), the right hand side is
~ € Wrf !~
1-a-v/)) =~ (E+“TE r'a) . A.10
(1-a-v/e) & (B4 48 4'n (A10)

These manipulations have permitted the common factor 1 — i - v/c to be cancelled, and

the equation of motion becomes

"n__ € Wrf I A
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>

Figure A.1: Motion of electron, relative to its average motion, in a plane
polarized, electromagnetic plane wave.

This equation is exact relativistically, except for not including the radiation reaction force.
We know that the only important effect of this force is the “slowing down” required by
energy conservation.

For the special case in which the wave is traveling parallel to the positive z-axis, n = z,
with electric field directed along the z-axis,

E
n=(0,0,1), E=Fcos® (1,0,0), B= = cos® (0,1,0), (A.12)

and the equations of motion are

E E
2" = 22 cos o, y'=0, = — T cos @. (A.13)
L m wiye? c Lmwy?
The solution to the first of these equations is
E E
o= —"" s o, zr=-— ¢ cos P, (A.14)
Lm wrf2 Lm wer

where integration constants have been dropped since we now assume the particle is, on the

average, moving with no transverse drift along the z-axis. Then the third of Eqs. (A.13)

becomes )
1 E
ZH = 2—C (m) Sin 2(1), (A15)
T
with solution )
1 E —
| Erf ) (A.16)
e —
o= 5 (o) m2me¥e,
rf

where a constant contribution to z has been dropped.
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Energy transfer. Because the motion has a transverse component, parallel to the electric

field, the particle energy varies;

d 1 [ eE \’ 1 [ eE \°
l_i.v’:_< © ) sin @, :——< © ) cos® +p . (A.17)

d®  mc? L \ mcuwyg L \ mcuwyg

Any decrease of electron energy must correspondingly increase the beam energy. This
is known as free electron laser radiation. If the wave increases the electron energy (at
the expense of its own intensity) it is known as an inverse free electron laser. Whether
the electron gains or loses energy depends on where it rides on the wave (i.e. its phase).
Of course the laser cannot be arbitrarily long, since the phase varies monotonically, and
the energy change eventually averages to zero. The considerations of this aside are not
really relevant if the beam and wave are approximately anti-parallel, as is the case in
the microwave undulator, since the phase ® varies rapidly, and this averaging takes place
almost instantly.
Comparison with undulator. Making the approximations ® =~ 2wt and £ =~ 27,
Eq. (A.16) yields ; .
x c
1(ch) = Y (mc2je) wn sin® . (A.18)

For comparison with undulator formulas, it is convenient to define an “effective K value”

E c
Keff. - 2 )
mc?/e we

(A.19)
which is the maximum angle, expressed in units of 1/7.

Connection to microwave power. According to Eq. (8.2.2), the maximum electric field
in a microwave beam is related to the beam power and other guide parameters by (factor

of two standing wave, traveling wave ambiguity here)

Emax? A\ 2 ab
P:% 1—<2—‘;f> % (4.20)

Combining Eqgs. (A.19) and (A.20), K. can be expressed as a product of dimensionless

factors

—1/4

c [2 At ) 2 J 1 A [ P(MW)
Ko = — /= [1- (22 N ~ . (A21
eff. Wyt ab( <2a>> (m62/6)2/20 V27 Vab V 693.1 MW ( )




Appendix B.

Relativistically Invariant Treatment of the Microwave
Undulator

Though the magnetic field of an undulator has been described as made up of photons, it is
even more natural to treat a microwave beam this way, especially because the photons are

real, not virtual. On the other hand, according to Eq. (8.2.3), the microwave photons are

directed at angles +cos™ /1 — (\y/(2a))? relative to the waveguide, and therefore also
relative to the electron beam. Because of this, the electron-photon system has transverse
momentum p, . This can be compared to the typical transverse momentum p,; . an

electron has because of its betatron oscillation amplitude;

Pl -~ h/)\w e.g. 12.4 keV & (B 1)
Ple  ymecr/€x/Be 293 x 0.511 MeV V €, ° '

This ratio is negligibly small for any conceivable electron beam. It is therefore legitimate

to treat photon and electron as traveling on anti-parallel tracks. It may be important,
later, to account for the spread of electron directions.

In this paper the polarization of the outgoing photons has been treated carelessly so
far—only the in-plane polarization component has been retained, and only approximately
at that. We are now in a position to tidy up this treatment, since the polarization de-
pendence of Compton scattering is well documented. In the remainder of this section
formulas will be copied from Berestetskii, Lifshitz, and Pitaevski, (BLP)!® with consid-
erably less than full understanding on my part. Feynman diagrams for the process are
shown in Fig. B.1(a). Most formulas will be specialized to a frame of reference in which
the accelerator is at rest.

Traditional discussions of Compton scattering have employed either electron rest sys-
tem (sometimes called the “laboratory system), or a “center of mass” system in which the
electron and photon momenta are equal and opposite. We will work in a different “labora-
tory system”; in it the photon is incident with four-momentum k, traveling in the negative
z-direction along the positive z-axis, and the electron is incident with four-momentum

p traveling in the positive z-direction along the negative z-axis. With A = ¢ = 1, and

- 208 —-
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Figure B.1: (a) Feynman diagrams for Compton scattering. (b) Kine-
matic variables. Triangles APB, APC, and BPC have areas (2/v/3)m?s,
(2/V/3)m?t, and (2/v/3)m?s, and triangle ABC has area (4/v/3)m* and is
equal to their sum. This assures that Eq. (B.6) is satisfied.

E = \/p? + m2, the initial four-momenta arel
k=(w,~w,0,0) = (w,k) , p=(E,p0,0)=(Ep), (B.2)
and the final four-momenta are
W = (WKL KK = (LK) = (B p ) = (BD) | (B.3)
Representing invariant scalar products of 4-vectors a and b by
(a,b) =agbp—a-b, (B.4)
standard kinematic variables s, t, and u are defined by
s= (p+kyp+k)=m?+2(pk)=m*+2w(E+p) ,
t = (Q—g',p—g'):—Z(k_',ﬁ):—2ww'(1+cosﬁ) , (B.5)

u= (p—k,p-F) =m? —2(p, k) =m? — 2w (E — pcos ) .
In the last steps, working in the laboratory system, with the photon scattering angle

defined to be ¥, the substitution &k, = w’cos ¥ has been performed.

 For consistency with Berestetskii, Lifshitz, and Pitaevski, the notation for the rest of this appendix is
inconsistent with notation in the rest of the paper. The main inconsistencies are that the photon is incident
from the right and the produced photon frequency, previously called w, will, from here on, be w'.
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As illustrated in Fig. B.1, these variables satisfy

w FE-pcosyd w(l+cosd) 1-(p/E)cos?

s+t+u:2m2 or — ~~
W’ E+p E+p 1+p/E

(B.6)

Dropping the last term will always be valid in the present context. To confirm this, even

at ¥ = 0, a useful number is

wE  wy <e§. 1.24 x 10*eV-A 10*

_w . =0.6 x107° . B.7
2 4x 1084  0.511 x 106eV > (B.7)

m m

For further simplifying Eq. (B.6), one can employ p/E ~ 1 —v?/2 and cos 9 ~ 1 — 9%/2,
so that

-1
') mow (1 2
W' (V) ~ 2w <2’}/2+2 . (B.8)

Recognizing from Eq. (8.1.1) that A, ~ A;/2, apart from notational differences, this
relation is equivalent to Eq. (6.2.33) with n = 1 and A® = 0. One also obtains the

approximation

t ~ —dww ~ —2w? (1 — (p/E)cos®) . (B.9)

But it is not safe to evaluate u using the final (approximate) form of Eq. (B.6), since
this would yield the result that u is independent of ¥, (and we will need a formula for

du/dcos?.) From the exact form of Eq. (B.6) we have

dw _w'2 P—w (B.10)
dcos w E+p’ '
Differentiating the last of Egs. (B.5) then yields
du 2/ P E — pcost
= 2w'p — 20 (__1) - £
d cos?) wp e w E+p
1+ cos ) B.11
:2’_2'2<£_1> i_w(— (B.11)
wp T w w’ E+p
~ w” (1 + cos?) .
BLP also define
s —m? 2w (E + p)
r= 3~ 2 )
o m (B.12)
m* —u 2w (F —pcos?)
y: =
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For calculating the differential cross section (per solid angle element d€2'), the following

relations follow from approximation (B.9):

A = sinddddy = —d cos9 d
dt dp ~ 2w dcosVdp = —2w? dQ' | (B.13)
dydp ~ — W'’ (14 cos®) dcosd dp/m? = W'’ (1 + cos®) dQ /m? .

Here ¢ is the azimuthal angle, which is the same in laboratory system, electron rest system,
and center of mass system. For azimuthally symmetric cross sections, d¢ can be replaced
by 27 to obtain a cross section differential in dd.

For the case of all incident particles being unpolarized and summing over final state

polarizations, BLP give the Compton differential cross section to be

& , w2 1 1\> (1 1\ 1[(z y
S —_Z - - =+ = . B.14
oy Te 2.2 ((x y> +<x y>+4<y+x ( )

In this formula, dt can be accurately approximated using Eq. (B.9).
To analyse the polarization properties of the radiation one introduces photon polar-
ization vector

e =eie + €€y (B.15)

where e; and e, are four-vectors with vanishing time parts and with the unit vectors e
and e as spatial parts. These vectors are orthogonal to the photon direction and to each
other, e; - €% = 0, and |e1|? and |es|? are probabilities that the photon has polarization &;
and ey respectively. The state of polarization can be described by density matrix

T N B I S 13
paﬂ_eaeﬁ_ 2 (§1+Z§2 1_£3 > ’ (B16)

where the &1, &, &3 are “Stokes parameters” that take values in the range from —1 to +1.
It is unclear to me at the moment how to calculate the Stokes parameters corresponding
to a mode propagating in a waveguide though, because the wave is completely polarized
€2 + &2 + €2 = 1. The simplest possibility (it seems to me) has, for the density matrix of
the initial photon state,

€= }27 PaB = ((1) 8) s (£1a§2a§3) = (0,0,1) . (317)
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This would correspond to a pure, linearly polarized wave propagating parallel to the waveg-
uide axis, with electric field horizontal.

For unpolarized incident electrons, and summing over polarizations of the final electron,
the polarization dependent cross section (which is the cross section we are interested in)

BLP give
do 1do W' (14 cos V) 1 1\* /1 1
27 4 9p2 N[22} (=22
i~ 2aq T m?2z? ((E3+£3) (a; y) (a: y)
11 1) & (a: y> < 2 2)
+aé -+ )+ o) (1=
Sit1 (a: Yy 2) 4 \y =z xr Yy (B.18)

s ()" (1) )

= Go + G3 (& + &) + Gui&ié] + Ga&alh + G333

With coefficients defined this way, the Stokes parameters of the emitted photons are given

by
n__Gu_ . un__Gn o ap_GstCnb
1 Go+&G3 >0 2 Go+&G3 > 73 Go + &3G73

According to this & = & = 0 implies &) = ¢f) = 0 which, with & = 1, implies
¢ = (Gs + Gs3)/(Go + Gs).

¢ (B.19)



Chapter 9.
High Brilliance Circular Rings

9.1. Choice of Beam Energy

For centuries optical physicists had to be satisfied with the modest 3:1 dynamic wavelength
range from red to violet, because light outside that range was invisible or their equipment
was opaque. For some reason X-ray physicists are reluctant to accept a similar restriction,
say to the range from 5keV to 20keV, even though their equipment tends to be opaque
at energies below 5 keV and energies above 20 keV are hard to produce, hard to focus, and
hard to handle. For designing a storage ring to be used as a highly selective instrument, it
seems sensible, to me, to adopt a nominal energy in this “useful” range and to optimize the
accelerator design for this energy.Jr Since Ay = 1A — E, = 12.4keV ~ 12345¢V is easy
to remember, and falls within the useful range, I suggest it be adopted as the “nominal”
X-ray energy.

Since X-ray beams having good cleanliness can be produced only by undulators, it is
essential to fold their inherent properties into the storage ring design. Apart from number

of poles Ny, the key undulator/wiggler parameter is

maximum deflection angle in wiggler

K — (9.1)

half-angle of radiation cone

Because the denominator has only a semi-quantitative significance, the same can be said
for K, but it is the best we have. Because the deflection angle is proportional to the wiggler
field By and the radiated power is proportional to B2, the radiated power is proportional
to K2. Until recent, third generation, light sources, this dependence has always caused K
to be run to high values (making the ID a “wiggler”) in order to obtain high flux (at great
cost to cleanliness.)

For “clean” operation, one wants the lion’s share of the power radiated from the un-

dulator to be contained in the lowest order interference peak. In terms of wiggler period

T Since any electron storage ring produces X-rays at essentially all energies, even though the storage ring
has been optimized for a particular energy, it can be used for X-ray experiments at any energy—though
perhaps at unattractively low flux values.
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Aw, its position is given by

A K?
Ay = 2—;”2 <1 + - + angular fall-off factor ) . (9.2)

The spectrum (integrated over “out-of-plane” angle) is shown in Fig. 6.3.2, from Jackson.
As a compromise between too-dirty operation at too-great wavelength shift, on the one

hand, and too-low flux, on the other, the value K = 1 will be adopted, (as is conventional.)

Frequency Spectrum From Undulator

3*x*(1-2*x+2*x**2)*(1-floor(x)) ——
3 "Se '~nnd_Dpak" ——————
25
S
2
3 2
o
(7]
3
S 15
>
o
g
= 1
0.5

0 02 04 06 038 1 12 14 16 1.8 2
photon energy (relative to peak)

Figure 9.1: Undulator frequency spectrum plots copied (combined and
somewhat garbled) from figures in Jackson, Classical Electrodynamics. The
spectra plotted assume the “out-of-plane” angle has been integrated over.
The K = 0 functional form can be read from the key in the upper right
corner. Preceeding the apparatus by a horizontal slit that stopped out-of-
plane angles greater than one third of the cone angle of the radiation, would
allow only the narrow energy band above the arrow to be transmitted. This
would be an extremely “clean” beam. The second interference maximum
is shown corresponding to K = 0.5.

The gap height g of the undulator turns out to be the most important parameter in
the whole facility. One visualizes a magnetic field pattern that is independent of xz and
y and has a perfect square-sawtooth z-dependence, but the reality is far different. No
matter what contortions one goes through in undulator design, because of the need to
reduce the period A, the on-axis magnetic field always ends up essentially sinusoidal;

B(z,y = 0,z) ~ cos(2mz/Ay), (independent of x because the poles are wide.) Using
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Maxwell’s equations to match the off-axis behavior yields
B (z,y,z) = By cosh (2w y/Ay) cos (27 z/Ay) - (9.3)

Though this formula is not strictly valid for y ~ g/2, it can be used to estimate the peak

pole-tip field Bp max;
By 1
Bp,max cosh (7T g/)‘w) .

This function is plotted in Fig. 9.2. Though one might tolerate an appreciable reduction

(9.4)

from the pole tip of the on-axis field, the presence of rapid dependence on y is undesirable,
since it makes the radiated output depend sensitively on steering through the undulator.

For this reason, a requirement such as A\, > 4¢ is conservative.

Spatial Dependence of Undulator Field
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Figure 9.2: On-axis magnetic field relative to pole tip field as a fraction
of gap-height /wiggler-period, g/Ay.

Combining the values K = 1 and A, = 4¢ with Eq. (9.2) yields A, = 3g/4? or

3
Ey = yme? = mc? )\_g = /g [mm] 2.80 GeV . (9.5)
Y

This function is plotted in Fig. 9.3

Though this analysis may not seem very fundamental, I believe that it is, since the gap
height g is certain to be limited by factors that have not yet been considered. Curiously, the
usual 10 o or 150 beam stay-clear requirement, traditional in the design of electron rings,

is not one of the determining factors—for the shockingly low emittances to be studied in



216 High Brilliance Circular Rings

Determination of Beam Energy From Undulator Gap Height

%
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Figure 9.3: Having chosen Ay, K and A, /g, the beam energy is deter-
mined as a function of g, which is limited (from below) by beam steering
and current dependent considerations.

the following sections, values of g as little as 1 mm are thinkable. But considerations of
beam-wall interaction and beam steering accuracy are certain to force g to exceed a few
millimeters—an exceedingly small “hoop to jump through”. This leads to values of energy
Ej in the range 5-7 Gev, that seems to match CESR capabilities naturally. One knows,
from experience with electron accelerators at Wilson Lab, that relaxing the need for small
g by increasing Ej beyond, say, 7 GeV, is unlikely to lessen the overall pain. It is probably
no coincidence that the ESRF and APS rings lie in the 5-7 Gev 1range.Jr

9.1. The Trbojevic-Courant Minimum Emittance Cell

In a paper titled Low Emittance Lattices for Electron Storage Rings Revisited, D. Trbocevic
and E. Courant give a lattice design which minimizes the emittance (under their assumed
hypotheses.) Their cell configuration is shown in Fig. 9.1.1. There is a single dipole
magnet, but it is convenient to regard the cell ends as occurring at the dipole center, as

shown in the lower part of the figure.

T The “microwave undulator” or “back-scattered Compton” scattering source, described in CBN 00-8,
may permit g to be increased somewhat. Since the beam tube could be small enough to block the 15 GHz
microwaves required, the microwave beam could be provided by a superconducting cavity with modest power
loss. Thanks to Maury Tigner for pointing this out.
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The main results of the T-C paper can be distilled into the following few formulas.
The horizontal emittance is given by

C’q’y2
Jep

H, (9.1.1)

€Erx —

where C, = 3.84 10713, v = Ey/(mc?) = 0.978 x 10* for Ey = 5 Gev, J,, the partition
number, can, for present purposes, be taken to be 1, and p is the bend radius in bending
magnets. The factor H, known as Sands’s “curly H” is given, in terms of Twiss functions

and dispersion functions, by
2
H = 7x772 + 20191;7777/ + 51:771 . (9'1'2)

The dependences on s of 8 and n within the dipole arel

2 ! 2
s I5] s s
-, O{E——:——7 77:770+—7 913
Bo 2 Bo 2p ( )

and the mean value of curly-H is given by

B =P+

L/2 .2 1 o2
(’H>:l/ -+ (ma+i'h)”
Loy p (9.1.4)
ns — OnoL/12 + 62L?/320 630
= + ,
Bo 12

where L is the length of the bending magnet and 8 = L/p is the bend angle in that magnet.
The T-C mimimization procedure is to select values of 5y and ny that minimize (#) with

L and 0 fixed. The result is

L 6L V15 5 VIS 5
=, = — HY = — LO° = —— pb° . 9.1.5
2@ 10 Y ( > P ( )

All that remains is to adjust lattice parameters to match these values of 5y and 79. These

Bo

conditions fix the lattice design, modulo a certain amount of freedom in choosing element
lengths and locations. Without providing details, Trbojevic and Courant exhibit one cell
design that meets the requirements. In the next section I give a more detailed design

prescription for design of individual cells and for the lattice as a whole. T

{ The formula for n was missing a factor of 2 in an earlier version, with a corresponding error in Eq. (9.2.16).

fIn preparing this report I have profited from the work of Carl Smolenski, which he presented as both
an oral and a written final assignment in Physics 689.
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Figure 9.1.1: Thick and thin lens lengths and strengths for Trbojevic-
Courant minimum emittance cell. The lower element ordering is convenient
for relating design values of By and 7y to the Twiss functions of sectors
consisting of repeated cells. The rectangular shaded region represents a
bend magnet and the angular figures represent sextupoles. As the lenses
are drawn, it is horizontal optics being illustrated. The parameter [d3,
though tentatively set to zero, is available for flexibility.

9.2. Design Formulas For Trbojevic-Courant Lattice in CESR
Tunnel

AB/2

Though the T-C prescription certainly minimizes () under the assumed hypotheses, this
is not quite equivalent to minimizing €, in a practical lattice that would fit in an existing
circular tunnel, such as CESR’s, having circumference C. To avoid worrying about sections
needed for RF accelerating structures, wigglers or undulators, instrumentation, etc., let
us introduce an “arc circumference” C, “£ 660 m, that leaves length C — C, available for
miscellaneous elements. By far the most important design choice is that of cell length L¢
or, equivalently, the number of cells N. These are related by

2
0= Wﬂ and L = % (9.2.1)

From this and the last of Eqs. (9.1.5) the emittance apparently varies as N —3 but, of
course, considerations not included in the discussion so far will set a set a practical upper

limit on N or, equivalently, a lower limit on L¢.
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Another effect worth mentioning is that, because of the factor p in the denominator
of Eq. (9.1.1), minimizing A is not equivalent to minimizing €,. In terms of quantities

defined so far, p is given by]L

p= g—;LL—O, (9.2.2)
To the extent that L fills most of the cell length Lo, minimizing H is equivalent to mini-
mizing €, but, especially as L¢ is reduced, an increasingly large fraction of the cell may be
required for the quadrupoles and sextupoles that are needed to achieve the optimal values
of By and ngy. This leads to difficult dependencies, even in designing the linear optics, but
the ultimate limit will be set by nonlinear effects that can only be studied by simulation
using particle tracking. (It should not be surprising if the length required for sextupoles
exceeds the quadrupole length allotment. In this case, a possibility worth considering is
that one of the sextupole types be built into the dipoles, by shaping their poles. This
would bring in nonlinear complications even in the analysis of the effects of quantum fluc-
tuations in the synchrotron radiation, but the formalism for treating such effects is fairly
well established.) Obviously a final design will have to be the result of iterating these steps.
In this paper I make only a single, tentative, choice of element locations, and study the
performance as a function of Lg. T do not attempt to iterate beyond this first cut design,
and I ignore complications such as fringe fields or the circumference allotment required for
magnet ends.

Yet another, and likely even more important, phenomenon militating against arbitrarily
high values of N, is a beam current limitation. Even if the nonlinear optics can be designed
to hold individual particles stably, for increasingly large values of N the magnet apertures
must decrease correspondingly. At some point this is certain to limit the beam current,
and hence the X-ray beam brightness. Similar comments apply to the Touschek effect.

For linear lattice design, following Trbojevic and Courant, though the bend region is
crucial to evolution of the dispersion function, its “optical” effect on [3;(s) is ignored. Also
the quadrupoles are to be treated as thin lenses. These assumptions are retracted in the
final design step using the TEAPOT program to study the dynamic acceptance of the

lattice.

t Following Sands originally, as do T-C, this paper assumes an “isomagnetic” lattice in which the magnetic
field has the same value everywhere except where it vanishes.
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Trbojevic and Courant are correct in asserting that there are enough free parameters
to allow the 8, and n,-function values to be achieved. They do not, however, analyse the
restriction that follows from the need for the vertical motion to be stable. In fact, the sim-
plest solutions have both ¢; and g2 horizontally focusing, which is obviously unsatisfactory.
Hence, in seeking solutions, one should certainly impose the condition giqs < 0. After a
certain amount of trial and error, it appeared that the best place for the vertical focusing
quad was as far from the dipole as possible. This suggested the virtue of pushing it to
the very end of the cell, as shown in Fig. 9.1.1 for [d3 = 0. This has the further virtue of
reducing the number of vertical focusing quads by a factor of two, by permitting elements
from adjacent cells to be combined. The T-C conditions can be met in this case, while

retaining vertical stability. There are indications though, that the °

‘window” is very small.
For example, the lattice is stable for g; being a thick lens, but it becomes unstable in the
limit that the g; lenses on the boundaries between cells are combined into a shared thin
lens. It remains to be seen whether this “flaky behavior” makes the nonlinear optics and
dynamic acceptance unsatisfactory. It may be that the T-C lattice is “unnecessarily good”
and that accepting somewhat higher emittance would lead to more robust optics. Though

this direction seems, to me, to make sense, I have not been able to identify a promising

way in which to relax the conditions.

Transfer matrix analysis of the thin lens doublet configuration shown in the left half

of the upper lattice cell shown in Fig. 9.1.1 yields

G ) =G (G )G DG DG
(@ 6)=0 D6 )06 )

Notice that positive q values correspond to horizontal focusing, so ¢ < 0 and g2 > 0.

o =

O =

Completing the multiplications yields, in the horizontal plane,

Xy =1—(d+12)q1 — lagz + dlaqigo
Xp=li+d+1l—l(d+12)q — (lh +d)laga + lhdl2qiq2

(9.2.4)
Fr=—q —q@+dug

Ff =1—-lLiq — (ll + d) q2 + l1dqiq2,
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and in the vertical plane, all negative signs are replaced by positive signs;
Yy =1+ (d+12) q1 + lago + dlaq1g2

Yy=li+d+1la+1li(d+12) g+ (I1 + d) laga + lidl2q1q2 025
Gy =q1 + @2 + dq1qo

Gy =1+haq + (I1 +d) g2 + lhdgrqa.
Letting X be the 4 x 4 transfer matrix of the left half cell in the upper part of Fig. 9.1.1,

the input and output coordinates of a general trajectory are related by the usual relations,

Xout = XXjp, and xj, = X_lxout- (9.2.6)

The second half of the cell consists of the same elements, but encountered in the opposite
order. Let X stand for the transfer matrix of this sequence. Symmetry under this reflection
is closely related to time reversal invariance that relates forward and backward evolving

trajectories. To express this mathematically, introduce a matrix o3 that reverses the slopes,

€T 1 0 0 O T
—x! 0 -1 0 0 x

y = 0 0 1 0 y = 03X, (927)
—/ 0O 0 0 -1 Y

From the vector xqy¢ appearing in Eq. (9.2.6), form the vector ogxy,¢ and take it as input
to the reversed-order half-cell. By symmetry, after propagating through the half-cell, one

should recover o3x;,, where x;, appears in Eq. (9.2.6). That is
O'3X_1X0ut = O'3Xin = XO‘gXOHt, (928)
and it follows from this that
X = 03X los. (9.2.9)
Because the determinants are equal to 1, the inverse matrices are given by
-1 -1
Xo X o ( Br Xy Yo Yo (G Yo, (9.2.10)
F, Fy -F, X, )’ G, Gy -Gy Y,

As mentioned before, it is most convenient to select the center of the dipole magnet as

origin. The transfer matrix M, through the full cell from this point, is given by

XoFy+ Xy Fy 2X. Xy 0 0
WYY — 2F, Fy XoFy + XpFy 0 0
M= XX = 0 0 Y,G, + Y,G, 2Y,Y, . (9.2.11)

0 0 2G,G,  Y,Gy+Y,G,



222 High Brilliance Circular Rings

If the cell is part of a periodic lattice, its transfer matrix can be written in the form

COS Ly By SN fig 0 0
M — —Slnﬂx/ﬁx COS by 0 0 . (9.2.12)
0 0 COS [y By SIIL by
0 0 —sinp/B, cospy

Note that the vanishing of the a’s is consistent with Eq. (9.2.11) because the 11,22 and
33,44 element are pairwise equal. The reason for this is that the full cell is invariant to
element reversal, so Eq. (9.2.9) implies that M = o3M ™ lo3. We have therefore obtained

formulas for the Twiss parameters at the cell ends;

cos iy = XoFp + XpFy, sin® p, = —4X, X F, Fy, B’C:_FF 7
N (9.2.13)
cos py = Y, Gy + YyGy,  sin® p, = —4Y,Y,G, Gy, 5@3 - _Gng '
yGyg

Because of the multiple-valued nature of inverse trigonometric functions, a certain amount
of care is required in extracting the Twiss parameters from these relation. For the numerical

values given in the table:

0. —1— cos™H (XoFy+ XpFy) - sin™! (\/—4X, X F,Fy)
v 2T B 2T ’ (
L 9.2.14)
Q, = cos™! (Y, Gy + Y,Gy) _ o5 ' (-V-1Y,G,Gy)
v 27 ' 27 )

The T-C requirement on 3y can be expressed by combining this result with the first of

Egs. (9.1.5) to yield the significant design formula;

X, X L
S i . (9.2.15)
F.Fy 215

If we regard all lengths as fixed, then this equation provides one of the two conditions

needed to fix the adjustable parameters ¢; and gs.

Except within the dipole region, the dispersion function has the same s-dependence as
does a particle trajectory. At the dipole end, using Eq. (9.1.3), we have n(L/2) = no+L0/4
and n'(L/2) = 0. Since n(s) must have even symmetry about the cell center, and 7/(s) is
odd, we must have

+LO/8 + LO/8
<770 _9/2/ ) = My, 1,172 (770 0/2 / > ; (9.2.16)
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because the transfer matrix through the bend-less section differs from the full transfer
matrix only by the reduced entrance and exit distances indicated by the subscript on M.
This equation, along with Eq. (9.2.15), fix both ¢; and ¢2. (The redundancy resulting
because Eq. (9.2.16) contains two equations provides a consistency check.)

Numerical values of the length and strength parameters of a first cut design are shown
in Table 9.2.1. The parameter of greatest interest, the horizontal emittance €,, is simple

to derive, using Egs. (9.1.1) and (9.1.5);

O VIE 21\ (e 10 (100°

To obtain the results in Table 9.2.1, after having fixed all length parameters, Egs. (9.2.15)

and (9.2.16), constrained by the requirement g;q2 > 0, were solved using MAPLE. Because
they are polynomial equations, MAPLE is able to solve the equations “exactly” without
using numerical methods. This is not just apple-polishing since the desired solution can be
picked automatically, circumventing the need to manually scrutinize all of the numerous
solutions, some of which are complex, others unstable vertically.

Since E, B and p values are the same for all cases, so are the radiation quantities,

54
Uy = energy radiated per turn = 0.885 x 10™* m/GreV3 i 1.32MeV ,

u, = critical energy = 6.6keV | (9.2.18)
o5 = fractional energy spread = 0.00066 ,

Piot = total radiated power = 1.32 (MW /A) I -
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Table 9.2.1: Sample Numerical Values

parameter unit z-value | y-value
Ey GeV 5.0
Ca m 660.0
p m 36.765
B T 0.4536
Lo m 6.0
N 110
L m 2.1
0 rad .05712
lgh m 0.33
lqu m 0.33
lsh m 0.48
[sv m 0.30
ld1 m 0.33
[d2 m 0.18
[d3 m 0.0
I m 0.165
Iy m 1.395
d m 1.44
41,92 1/m -0.5104 | 1.2511
BBy m 0.2711 | 0.4097
Mo m .00500
Q:,Qy one cell | 0.7902 | 0.4334
Qz,Qy total 86.92 47.68
(H) 1074m | 1.474
€z 1070m | 1.474
Thick Lens Analysis (param.’s as above)
Q:,Qy total 77.80 31.20
51,52 1/m? | -27.15 | 35.02
i m 0.00771
BBy m 0.3345 | 1.5348
q/S mm 18.8 35.7
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9.3. Thick Lens and Nonlinear Optics

Thick lens optical functions are shown in Fig. 9.3.1 and Fig. 9.3.2 and also in the form of
numbers at the bottom of the table. The 7y thick lens values are quite close to the design
values. The 3, values are less good, typically too large by 50%, so the emittances would be
increased by about the same factor. The values of 3, are even worse, too great by roughly

a factor of two.

Figure 9.3.1: Functions \/f;(s) and /By(s) for the L = 6 m case.

Anyone who has struggled to make CESR function properly with tunes greater than
10 is sure to doubt the feasability of running with ), = 135. The problem is that the
strength of sextupoles (needed to compensate chromaticity) increase rapidly with tune.
Typical (electrical) quad strengths (inverse focal lengths) in CESR are 4<0.25 /m for quads
of length 0.6 m, bore diameter 80 m. Gradients in the existing permanent magnet quads
are perhaps twice as great? For the proposed accelerator the bores have to be, and can
be, reduced by perhaps a factor of 5. This should make the quad strengths achievable,
at least for the Lo > 6 m. Sextupole strengths in CESR. are perhaps S ~ 0.3/m?. Even



226 High Brilliance Circular Rings

Figure 9.3.2: Dispersion function 7(s) for the Lg = 6 m case.

though sextupole strengths vary inversely with bore diameter squared, it may be sextupole
strengths that limit the cell length.

A dimensionally consistent (over-)estimate of dynamic aperture is ¢/.S which, for CESR
would yield about 0.5 m. To estimate the dynamic acceptance of the proposed ring, sex-
tupoles S; and S have been adjusted to set both chromaticities to zero. The resulting
sextupole strengths are shown near the bottom of the table.T Values of the ratio q/S
are also listed. From these numbers we have to expect dynamic apertures smaller than
a centimeter. (As mentioned before, superimposing sextupole on the dipole may give an
improvement.) In any case, when measured in units of beam o¢’s, the dynamic acceptance
may be quite satisfactory because of the exceedingly low value of €, since the needed
aperture has a factor scaling as \/€;. (Possible injection difficulties are being ignored.)

The results of numerical tracking are shown in Fig. 9.3.3 for on-momentum, and
Fig. 9.3.5 and Fig. 9.3.4 for off-momentum. What is plotted are boundaries, in the z-

y plane, inside which the motion is stable (for at least 256 turns) and outside which it is

T One must beware a conventional factor n! = 2 that may or may not enter the definition of sextupole
strength.
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unstable. Since, in most cases, motion is stable out to almost 50 o, all cases appear to be
acceptable. An example may be helpful in interpreting these graphs: consider the barely
stable Ap/p = 0, Lc = 6 m point, with coordinates x = 0, y/\/B:, = 0.77x 1073 /m. From
Table 9.2.1 one has 3, = 4.1 m, with the result that y = 1.5 mm. This point sets a vertical
limit, at the dipole center, for a beam with large vertical motion (present, for example,
because of coupling.) However, one is more concerned with the aperture at the vertical
focusing quads where 8, ~ 25m, and y ~ 4mm. Even ignoring the factor of two emittance
reduction accompanying full coupling, this is roughly a “45¢” point. For a beam chamber
with gap of, say, 8 mm, the physical and magnetic apertures would be comparable, with

both comfortably large relative to the equilibrium beam size.

On-Momentum Dynamic Acceptance (256 Turn) For Different Cell Lengths
0001 T T T T T T

Chromaticities set to zero

0.0009

4
: 5

Fully coupled (round beams) 3 6
m

E_0=5.0 GeV 50 sigma at L_
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Deltap/p = 0.0 N 50 sigma at

-
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o0 b
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Figure 9.3.3: On-momentum, Ap/p = 0, transverse acceptance for Lo =
4,5 and 6 m. With all particles being launched from a dipole center, with
' =3y’ =0, points are plotted at those points closest to the origin on rays
emanating from the origin. Being plotted at z/v/Bs, y/\/By, they would lie
on an ellipse 22/8; + %/ By = N2e, if the aperture limits were “isotropic”.
(There is no particular reason for this to be true.) Values for €, are taken
from Table 9.2.1 and N, = 50. Since (8, =~ 1m the axes are not very
different from transverse displacements measured in meters.
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Off-Momentum Dynamic Acceptance (256 Turn) For Different Cell Lengths
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Figure 9.3.4: Off-momentum Ap/p = —0.005, transverse acceptance for
Lo =4,5 and 6 m.

9.4. Dispersion Suppression

Within a pure dipole magnet the equation satisfied by the dispersion function is

d*n 1 A
d—;; = and hence An = 78 : (9.4.1)

In one T-C cell i increases from —6/2 to /2 in a magnet of length L. Correspondingly,
n' would increase from 0 to 6/2 in a magnet of length L/2. One therefore envisages a
dispersion matching cell that is identical to the T-C cell, with the exception that the
magnet is only half-length, and is also appropriately located, with its entrance position at
s = § so that the dispersion function 7(L/2) (in the special cell) matches n(L/2) (of the
regular cell.) The condition for match is

(L/2?* 6 (L _ L Lo
L A RS L 4.2
2y Tala Tt g) M (942)

In this equation one could substitute for 7y using Eq. (9.1.5) but, since the thick lens and

thin lens optics do not agree very well, we leave the condition as

§= —% , (9.4.3)
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Off-Momentum Dynamic Acceptance (256 Turn) For Different Cell Lengths
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Figure 9.3.5: Off-momentum Ap/p = 0.005, transverse acceptance for
Lo =4,5 and 6 m.

and anticipate fixing s empirically, in the thick lens optics, to give perfect dispersion
suppression. The optics for a sequence of six T-C cells, with dispersion suppressed in the

central two, is shown in Fig. 8.3.1.

9.5. Touschek-Dominated Operation

Though the Touschek effect is well understood, it is not well understood by me. I
have copied formulas more-or-less mindlessly, evaluated them, and plotted the results in
Fig. 9.5.1. The formula labeled “Bruck” (theory due to Haissinski) comes from H. Bruck,
Accélérateurs Circulaires de Particules. The formula labeled “LeDuff” comes from C. Boc-
chetta, Lifetime and Beam Quality in CERN 98-04. The theories apparently differ pri-
marily in their treatments of dispersion. Since the LeDuff theory is more recent, it may be
more reliable. It will be necessary to “pull out all the stops” to ameliorate the Touschek
effect. The bunch length has been taken as 0.1 m, which would only be possible with a
third-harmonic cavity (because large overvoltage of the fundamental RF is also required.)

A peripheral benefit of bunch lengthening is that beam-chamber higher mode loss is likely
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Figure 9.4.1: Six consecutive T-C cells, with the second and fifth cells
modified to provide zero dispersion in the third and fourth cells.

to be unimportant, even with the chamber bore being tiny.Jr It is assumed that all buckets
are filled, Ng = 1280, which will be possible only with feedback (even though the total
current is modest.) Increasing the energy, say from 5 GeV to 7GeV would also give a big
improvement. The lifetime increases proportional to 42, or to an even higher power of 7,
depending on assumptions concerning the beam o’s. [Y. Miyahara, IEEE Trans. Nucl.

Sc., 32, 3821 (1985).]

t Beam-chamber higher mode loss may be a significant problem in the ERL scheme, where short bunches
are essential.
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Figure 9.5.1: Beam lifetime caused by the Touschek effect. Lo = 6 m,
€z =4.0x107"m, Fy =5.0GeV, 0, =0.1m, Ng = 1280.

9.6. Conclusions

From the calculations that have been performed, including Fig. 9.5.1, the beam conditions
listed in the caption to that figure, with a coupling factor of perhaps 0.1, seem likely to be
achievable, provided the hard probems that have been identified can be solved. Compared
to the energy recovery linac (ERL) source that is currently under study, the beam current
is the same, and so is the area eye,. One therefore expects the achievable X-ray beam
brilliance of this machine to be comparable to that of the ERL source. The present design
(it seems to me) relies only on known, non-contraversial technology. It will be cheap to
build and cheap to operate, and will be “world class” in performance. By specializing to
a limited, but prime, spectral range, it should be able to out-perform existing machines
in flux, more so in brilliance, and most of all in cleanliness. Since other sources, such as
ESRF and APS, are (well)-designed for general purpose use, it is not realistic to suppose
that a new (and inexpensive) ring can be superior in all respects, but it can be superior in

some.

Still, there can really be no conclusions as yet, since this paper is so preliminary. It

will be extremely difficult to decide how small the chamber height g can be made and,
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without that, the choice of maximum beam energy cannot be made. (The same comment
applies to ERL.) The reviews have been mixed on the performance of the all-permanent-
magnet ring at Fermilab but, for the small bore required, such a design is attractive, unless
giving up beam energy adjustability is too great a sacrifice. (Handing the responsibility for
wavelength tuning to the undulators greatly complicates and compromises their design and
performance.) The brilliance that can be achieved will depend on the design of undulators

and their influence on the machine.



Chapter 10.
Some Ingredients of FEL Theory

Abstract: The free electron laser depends on many ingredients, some of which have been
discussed already in the course. I am not qualified (at least not yet) to give a comprehensive
yet simple overall explanation of how the FEL works, but in this packet I include discussion
of some of the essential ingredients that have not yet been covered, and reminders of things
that have.

The essential ingredients include:

e Beam parameters, o, 0,1, 0y, 0, 05, 05. See packet 5.

e Undulator radiation. See Finkelstein lecture notes and packet 3.

e Mirror properties and limitations. See Gruner lecture notes.

e Interpretation of undulator radiation as Compton scattering.

e Spontaneous and stimulated photon emission, and photon absorbtion.
e Applicability condition for semi-classical treatment of FEL.

e Optical resonator.

e Density of states and stored energy in laser resonator.

e Trajectory and energy dependence of electron in electromagnetic wave.

e Optical klystron

10.1. The Free Electron Laser (FEL)

The general operation of the free electron laser can be inferred from Fig. 10.1.1. A circulat-
ing bunch of electrons is arranged to pass through the electromagnetic wave in an optical
resonator in such a way that energy is extracted from the electron beam in the form of
radiation. Some of the radiation passes through the partial mirror for its intended use.
The rest replenishes the resonator energy. For the device to be useful the energy radiated
per passage has to be greater than the energy lost in the resonator between passages.
The radiation can be analysed (semi-classically using conservation of energy) as the
radiation that accompanies deceleration of the electrons by the electromagnetic wave, or

(quantum mechanically) as Compton scattering of the virtual photons of the undulator, as

-233 -
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stimulated by the pre-existing photons trapped in the optical resonator. Historically the
quantum picture came first, but the classical analysis is far more elementary and, as far

as I know always valid in practical devices.

storage ring

i partial
mirror undulator mirror
<‘—_>——>——‘ _____________ R FEL
S U = === —
photon optical
bunch resonator

Figure 10.1.1: One long straight section of a racetrack-shaped storage
ring is shared with an optical resonator and a magnetic wiggler to form a
free electron laser.

The so-called “optical klystron” uses two undulators, separated by a dispersive region.
The radiation from the first wiggler introduces energy oscillation along the electron bunch,
which the dispersive section converts to a kind of “population inversion” in the form of par-
ticle density bunching. This bunching can be synchronized into optimal phase relationship

with the pre-existing radiation, to yield greater radiation gain.

10.2. Interpretation of Undulator Radiation as Compton
Scattering

For a horizontal-bending undulator aligned with the z-axis, the only non-vanishing electric
or magnetic field component is B, = By cos(k,z). With electrons propagating at speed v
along the positive z-axis, it is useful to transform both the wiggler field and the electron
coordinate into the rest frame of the electron. The result is

E' = —yv By cos (kyy (7 + vt')) x, and B’ = —12 x E . (10.2.1)
v
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This is very nearly the same as the field of a plane polarized plane wave, propagating in
free space. In fact, in the limit v — ¢ the correspondance becomes exact. Making the
replacement v = ¢ yields what is known as the Weizsacker-Williams approximation.

The wave just derived is said to be made up of “virtual” photons, and these photons
can Compton scatter off the electrons. The (magnitude of) the rest energy of one of these

virtual photons (calculated most easily in the laboratory frame) is given by

jm 2| = ‘\/(hw)Q — (hkw)? 2] = Bkye | (10.2.2)

since the frequency in the laboratory vanishes.

Next consider the situation in the rest frame of the electrons. In this frame the photon
energy is E = hkyyv, since kyyv is the (frequency) factor multiplying ¢’ in the argument
of the cosine factor in Eq. (10.2.1). If this energy is small compared to the electron rest
energy,

E% = hkyyv << mc? (10.2.3)

(as will always be true for cases of interest to us) the incident and scattered photon
energies are the same. It will be valid to neglect the the virtual photon mass (calculated

in Eq. (10.2.2)) if it is small compared to this energy;
?
hkye << hkyyv, (10.2.4)

which reduces to v >> 1, and will be abundantly true in practice.
Condition (10.2.3) is also the condition for the validity of treating Compton scattering

as Thomson scattering, for which the total cross section is

o= %ﬁ r2 =0.665 x 1072 m? . (10.2.5)
where 7, = 2.81784 x 10~ m. (See Eq. (2.21).) Though this cross section was calculated
in the electron rest frame, the lab frame value is the same.

To calculate the radiation pattern in the laboratory it is necessary to write the angular
distribution in the rest system of the electron, and then to transform it into the laboratory
system. Though the scattered photons are mono-energetic in the electron rest system, this

will no longer be true in the laboratory system. We can write down the maximum lab
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energy, since it corresponds to pure back-scattering. The result of Lorentz transforming

the photon four-vector, (hykyc, 0,0, hyk,), back to the lab frame, is a photon of energy
YU\ 2
B, = (1 + E) V2 ik . (10.2.6)

Since v & ¢, the back-scattered wave length is less than the wiggler period A, by the factor
2+2. This agrees with the undulator peak calculated using classical electrodynamics.

There is still quite a bit of work to do to show that the radiation calculated this way is
identical to that calculated previously using classical electrodynamics. But we have gone
far enough to be able to introduce the original FEL motivation. When the cross section
just calculated is calculated quantum mechanically (and called the Compton cross section)
the emission probability into each state is enhanced proportionally to the pre-existing
population of the state. (This “fundamental source of laser action” is discussed further
in the next section.) This is the role of the photons trapped in the optical resonator.
The stimulated emission enhances the intensity of this radiation. Unfortunately, there is a
competing process, namely absorption, that reduces the intensity. To a first approximation
(or rather, on the average) these intensity contributions are equal and opposite, and there
is no appreciable intensity enhancement.

The trick to enhancing the emission relative to the absorption is to make the electrons
have energy less than the “resonant energy” (the energy for which the laser wavelength
is Ay /(27?) since the absorption is then weakened relative to the emission. However, too
great an offset, leads to reduced radiation as the electron loses synch with the wiggler—an
effect that becomes increasingly important as N, is increased. The combination of these

factors leads to the “gain” dependence shown (arbitrary units) in Fig. 10.2.1.

10.3. Absorption, Spontaneous Emission, and Stimulated
Emission of Photons

According to statistical mechanics, there is an important relation governing emission and
absorption of radiation. Let the rate of spontaneous emission of a photon by an electron
be given by As; and assume that the rates of absorption and stimulated emission are both
proportional to p(v), the photon energy density per unit frequency range at the position

of the electron. Transition rates for emission of a photon, Ws;, or absorption a photon,
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Figure 10.2.1: Dependence of intensity gain of FEL as a function of
momentum offset d, relative to the central momentum, in an undulator
with N, periods. The vertical scale is arbitrary. The horizontal variable is
47 Nyo. The analytical formula is shown in the caption.

W12, can then be expressed as
Wa1 = Baip (v) + As,
(10.3.1)
Wiz = Brap (v),
where By and Bjs are the coefficients of stimulated emission and absorbtion.
There is no reason to suppose the electrons and photons we are dealing with are

anywhere near thermal equilibrium, but if they were, p(v) would be given by

B 8rhy 1

p(v)= 3 T 1 (10.3.2)

and the number densities of electrons, No and Nj, with and without the energy corre-

sponding to that of one photon, would be in the ratio

% _ oh/kT (10.3.3)
The reason these relations are germane is that the coefficients A1, Bs and Bis, themselves
independent of the local distribution of radiation, must be consistent with this equilibrium.
This would imply

Ny [Ble (l/) + A21] = N Biap (I/) . (10.3.4)
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Solving Eqs. (10.3.4) for Na/Np and substituting the result into (10.3.3) yields
An

p(v) = BT — By (10.3.5)
For this equation to be consistent with Eq. (10.3.2) requires
C3
Bis = By = W Agq . (1036)

The first equation expresses the equality of absorption and induced emission. The second
expresses the stimulated enhancement over and above spontaneous emission.

As stated before, FEL operation depends on this stimulated emission. But, as with
any laser, to get more emission than absorption, it is necessary for the ratio N2 /Nj to be

altered artificially from its thermal equilibrium value.

10.4. Applicability Condition for Semi-Classical Treatment of
Undulator Radiation

It is sometimes convenient to treat analyse wiggler/undulator radiation in the rest frame
of the electron. In this frame, because the wiggler is rushing past the electron, its spatial
period is Lorentz contracted to Ay /7, and its overall length is NyAy/v. As the electron
oscillates (transversely, parallel to the electric field in this frame) it emits radiation at
frequency w’ = 2w ¢y/Ay. This dipole radiation is directed more or less isotropically, but
with a minimum along the electric field direction. When this radiation is transformed back
into the laboratory frame, the radiation is Doppler shifted to far shorter wavelengths and
is the strongly forward-peaked “searchlight beam” we have derived repeatedly.

Since atomic particles and photons are involved in this process, one can inquire whether
quantum mechanical considerations are important. For a start, one can observe that it
is inconsistent to start with an electron at rest. It is not possible to localize the electron
better than describing it by a Gaussian wave packet, with spreads Axy and Ap, that

satisfy the Heisenberg uncertainty condition,
AxgApy > I . (10.4.1)

As the packet spreads with time, let its spatial spread be Axz(t). Accepting the equality

condition as determining Ap,, and treating the electron motion non-relativistically, the
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spatial width evolves with time according to

ht \?2
2 _ 2
Az? (1) = Aa + (mA%) . (10.4.2)

The total time it takes for the wiggler to pass the electron is Ny, Ay /v ¢. To minimize the
importance of spreading, we can choose the value for Axg that minimizes Az(t) after this

time, namely
2ht NyAy he
=— =dx

(10.4.3)

The final factor, A\g = he/(mc?) = 2.43 x 1072 m, is known as the electron Compton
wavelength. To maintain coherence over all wiggler radiation, one requires the electron’s
Heisenberg motion to be small compared to the wavelength of its radiation. Requiring
Axg(t) to be much less than A, /v, the wavelength of the field in the electron’s rest frame,

yields

11 Ay eg. 1 ., 1072 5
Ny << — 2 2107t — 5~ 10°) . 10.4.4
v 47 v Ao < 47 2.4 x 10~12 ( )

By this estimate, as long as the number of poles is less than ten thousand or so, quantum
effects can be neglected.

In striving for ever more brilliant beams one reduces the emittance of the electron
beam, say to ¢, = 02/B, = 10719 m, where 3, say equal to 1m, is the lattice S-function

at the wiggler location. It is appropriate to compare €, to the quantity (from Eq. (10.4.3))

2
A:;O ® <N, 2—“’ 3 x 1071 (m) | (10.4.5)

since it would be inconsistent to demand the dimensions of the packets describing individual

electrons to exceed the beam dimensions. For the numerical values we have been using,

and N,, < 10?%, this condition is comfortably met, provided By > Ay.
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10.5. Optical Resonator

This section is largely unchanged from an appendix to an earlier handout, that was never
discussed in class. It is reproduced here for your convenience in not having to recover those
notes, and for my convenience in being free to make additions and corrections.

One purpose is to further develop the analogy between beams of light and beams of
particles. This analysis is essential to the understanding of optical lasers—in particular
free electron lasers.!

At the cost of suppressing polarization properties, one can treat light as a scalar wave.
Let E(t;x,y, z) ~ exp(—iwt) be such a wave, which we assume to be monochromatic and
traveling more or less parallel to the z axis in a “focusing medium” such as an optical fiber.

Paraxial approximations will be assumed to be valid. The wave equation satisfied by FE is
V2E + (k§ — kokay2® — kokayy?) E = 0. (10.5.1)

It is the quadratic terms —kokz,xwz — kokmyz that cause the wavelength to depend on
position and this is what causes focusing. Before solving this equation, we embark on a

digression to further correlate wave and particle descriptions.

10.5.1. Wave particle duality

A closely analogous mechanical system has a single particle of kinetic energy T = (p% +
pz +p?)/(2m) traveling more or less parallel to the z axis in a “potential well” such that its
potential energy is V = k"z,mazz/2 + kéyyy2/2, with Hamiltonian H (x, y; pg,py,p.) =T +V
and total energy £. The Schrodinger equation for such a system is
oV h?
= ——— V20 + V (1) T. 10.5.2
"ot 2m +V () ( )

In the classical limit one neglects 7, for example by substituting
U (r,t) = AeSEN/M (10.5.3)

and then setting h = 0. The result is
1
2m

0S
ot
 Much of this appendix is drawn from A. Yariv, Optical Electronics, Holt, Rinehart and Winston, 1976.

There may be “factor of two” or sign errors, since I have transcribed the formulas from 2D cylindrically
symmetric waves, dependent on r = \/x2 + y2, to 1D waves, dependent on .

(VS +V (r) = (10.5.4)
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This is the Hamilton-Jacobi equation for the analogous mechanical system. In this formal-
ism p =VS and £ = -05/0t, so Eq. (10.5.4) amounts to conservation of energy. Because
the gradient operator picks out the normal to a surface of constant S, the equation p = V.S
relates the particle direction to surfaces of constant S in the same way that rays are re-
lated to wavefronts in optics—which is that rays are everywhere normal to wavefronts.
The trajectories derived from this equation are necessarily the same as the solutions of a
classical harmonic oscillator equation like Eq. (1.2).

The connections between particle quantities and wave quantities are the deBroglie and

Planck relations,
Py _ kg

=7 = . 10.5.
. and w 5mh = o (10.5.5)
Let us then introduce a new unknown k(r), related to S(r) by
5(r) =k(r) -r— p—%t so V¥ (r,t)= Aeik(r)'re_i%t. (10.5.6)
h 2mh -’ ’

The frequency w introduced here is rather artificial in classical mechanics and has no
significance other than being £ is different units. In any case, hkg is a constant equal to
the momentum a particle of this frequency has when, because it is traveling precisely along
the z-axis, it has neither potential energy nor transverse kinetic energy.

With ¥ having the time dependence shown in Eq. (10.5.6), and after relating the
parameters kj , and k'lz,y to k2, and ko, one sees that Eq. (10.5.1) for E is the same as
(time-independent) Schriodinger equation for the particle wave function . In the short
wavelength, geometric optics limit then, the rays of a solution to the wave equation are

trajectories of a material particle propagating in the corresponding potential.
10.5.2. Gaussian beam in a focusing medium

To emphasize the wave picture, for later application to lasers, we return to the task of
solving Eq. (10.5.1). For consistency with the rest of the packet of notes we will simplify
a bit by assuming that k3 , = 0 and that F is independent of . However all the formulas
generalize naturally to simultaneous z and y dependence and (especially) to azimuthally-
symmetric systems for which ko, = ko, in which case the motion depends only on r =
V22 + y2. We also simplify the notation slightly ko — k, ka, — ka:

O’E 0’E

2 2
o7 "ozt (k* — kkay®) E=0. (10.5.7)
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Since we will study only paraxial beams parallel to the z-axis we represent E as

E(y,2) = (y,2) ™, (10.5.8)

where 1(y, z) is assumed to be a slowly varying “modulating” factor, satisfying the in-
equalities 029 /02% << k% and 0%1/02% << korp/0z. Substituting into (10.5.7), we find
that 1 (y, z) must satisfy

0%y oY

— + 2tk — — kk = 0. 10.5.9

02 T2k, 2y°Y) ( )
With a view towards obtaining two conditions, one for motion for which y is negligible,

and another where y motion is important, we seek a solution of this equation in the form

=exp | zy L
Y = p(P()+ k2q()>' (10.5.10)

This substitution will lead to a Gaussian beam if g(z) is allowed to be complex and have
appropriate z-dependence. For reasons to be explained later ¢ will be called the “complex
radius of curvature”. When substituting from Eq. (10.5.10) into Eq. (10.5.9) one can
separate terms proportional to y? from terms having coefficients independent of y. To be
valid for all y both coefficients must vanish. This leads to

2 .
1 d (1 ko dP 7
- L p— d — = _—. 10.5.11
<q> T dz ( ) + ) 8l dz 2q ( )

10.5.3. Gaussian beam in free space

In free space Eqgs. (10.5.11) simplify to

2 .

1 d (1 dP 7
Y L2 (g g £ 10.5.12
<q> + dz (q) ) 8l dz 2q ( )

From the first of these ¢(z) = az + b, where a and b are arbitrary constants. Being free to

choose these constants, we define

I B 1 . i (10.5.13)
q z—iz 22+ 2(1+28/22) 20 (1+22/23) o

Then the second equation yields

P(z) = %m <1 + 3) : (10.5.14)
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where the constant of integration has been chosen as —(i/2) In(—izp). Substituting these

expressions into Eq. (10.5.10) yields

. N i B 1 (10.5.15)
= exp nm 9 Z(1+Z(2)/212) 20 (1—|—z2/z(2)) . 0.

Using the relation In(a + ib) = Inva? + b2 + itan~!(b/a) the first term in the exponent

1
exp <— In/1+ zi> = —— exp <—i tan ™! i) . (10.5.16)
“ 1+ (2/20)° “0

To cast Eq. (10.5.15) into a form appropriate for comparison with Figure 1.6 and Eq. (),

becomes

we define
9 20 2 2 2 %
k 2§ z

Finally, by Eq. (10.5.8), the electric field is given

% exp <zl<;z — i tan"! (2/20) + y; <Rié) - w;(z)» - (10.5.18)

In laser terminology this is known as the “fundamental mode”, though that terminology

E(yv Z) = EO

refers to a cylindrically symmetric beam while we are dealing with only one transverse
dimension. The “lowest mode” has resulted because only terms of order y? have been

retained.

10.5.4. The ABCD Law

The reason for having chosen the symbol R(z) is that in a pure cylindrical wave, the spatial

dependence near the z-axis is as
2
expikR = expik\/ 22 + y2 ~ expikz+ik§—R. (10.5.19)
Also the symbol ¢ in Eq. (10.5.10) was chosen with this dependence in mind. Combining

the various formulas we have

1 1 :
- +— (10.5.20)

¢(z)  R(z)  kw?(2)

This is the basis for calling ¢ the “complex radius of curvature” of the wave. Note though,

that it includes the phase evolution corresponding tho the fact that the wave is spreading.
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Though Eq. (10.5.18) was derived to describe free space evolution of the wave, we need
not demand that E(y, z) as given by Eq. (10.5.18) came from that source. Rather we can
regard R(z) and w(z) as local parameters describing the field at point z in an arbitrary
Gaussian optical line. R(z) is the radius of curvature of the local wave front and w(z) is a
measure of the local beam width (actually height since y is a vertical coordinate.) For this
representation to be useful we must be able to calculate the evolution of R(z) and w(z)
through arbitrary optical elements.
According to Eq. (10.5.11), the differential equation satisfied by ¢, in order for Eq. (10.5.18)

to properly describe field evolution in a focusing medium is

2
1 d (1 ko
- () + 22 =0, 10.5.21
<Q> iz (Q> % ( )

This can be converted into a linear equation by defining

1 ! k
- = 8_7 SO 8” _|_ ?2 s = 0 (10522)
q S

where d/dz is indicated by a prime. The general solution of this equation is

k k
s(z):asin\/%szbcoswfz
(10.5.23)
B JE, R
a5 cos /=2 L siny/ -z

This solution subsumes the free space solution obtained earlier, as well as propagation
through a thin lens (by an appropriate limiting process.) Reexpressing Eq. (10.5.23) to
obtain ¢(z) in terms of ¢(0) = gg, we obtain

qocos\/k2z+ \/ %o sm\/]€2

(10.5.24)
—qm/k2 sin 4/ k2z+cos\/ Lo
For the evolution zy — 21 this transformation is traditionally written as
A B
_ A1+ b (10.5.25)
C1o 9o + Dio

The coefficients can be read off from Eq. (10.5.24). Subsequent evolution z; — 22 is given
by
_ Anq+ Bx

= . 10.5.26
Corq1 + D2y ( )
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Defining the concatenated transformation by

_ Ao q0 + B

- . 10.5.27
© Ca0 qo + D2 ( )

Direct substitution shows that this concatenation requires
(o oo)=(cn Ba) (e o). oo
By a miracle of the sort that makes physics so satisfactory, the matrices introduced
here are none other than the transfer matrices introduced in section 1.2. The reason for this
is that Eqgs. 1.2 and the second of Egs. (10.5.22) are the same. As a result the coefficients
in Eq. (10.5.24) are the same as the transfer matrix elements for Eq. 1.2. Since all linear
optical elements are special (or limiting) cases of a uniform focusing medium, and since
the same matrix concatenation holds, the result is true for arbitrary beam lines. This rule
governing the evolution of ¢(z) (or equivalently R(z) and w(z)) is known as the “ABCD

law”.

It applies equally to photon and electron beams though, as far as I know, it has
never been applied to electron beams. In the world of lasers there is a formalism that
treats 1/q as a complex impedance and develops analogs between optical lines and lumped

constant electrical circuits.]L

10.5.5. Optics using mirrors

Designing optical beamlines for X-rays is greatly hampered by the absence of lossless re-
fractive media at short wavelengths. There is however an appreciable range of wavelengths
for which soft X-rays can be reflected and this makes spherical or cylindrical mirrors prac-
tical. The formalism just derived can be used for the analysis of optics based on mirrors.
Of course, mirrors can also be used in optical systems for visible light, with laser resonators
being the most important example. see Fig. 10.5.1.

Since the transfer matrix for a mirror is

(—21/1% 2) (10.5.29)

Eq. (10.5.25) becomes

a - —E + q_() (10530)

t Kogelnik, H., On the propagation of Gaussian beams through lenslike media, Applied Optics, vol. 4,
p. 1562, 1965. Gerrard, A. and Burch, J.M., Introduction to Matrix Methods in Optics, Dover, 1975.
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(a) "redlistic" ray picture (8) "high school optics® ray trace

Figure 10.5.1: Optical resonator defined by two cylindrical mirrors. (a)
More or less realistic rays and wavefronts. (b) Elementary ray tracing using
focal length equals radius/2.

Substituting from Eq. (10.5.20), and ignoring imaginary parts, (signs???)

L2 + = (10.5.31)
Ri R Ry o
When this formula is applied to the optical system shown in Fig. 10.5.1 one sees that it

partially validates an analysis using the “high school optics” formula

1 1 1
object-dist. + image-dist.  focal-length’

(10.5.32)

where the focal length of a mirror is half its radius. One sees though that the actual rays
are not at all what one draws with classical ray tracing. The actual beam envelope shown
is the same as would be obtained using the [-function formalism of accelerator physics.
Of course the beam divergences shown in the figure are unrealistically great. Also, for soft
X-rays, because reflection is only appreciable for glancing reflections, practical geometries

are far less favorable than that shown.
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10.6. Density of States and Stored Energy in Laser Resonator

The reason an FEL deserves to have “laser” as part of its name is that its functioning
depends on stimulated emission. The phenomenon of stimulated emission is due to the
Bose nature of photons. The spontaneous radiation of photons into any particular state (or
mode) is augmented by stimulated emission that is proportional to the number of photons
already in that state. These pre-existing photons have energy, and to get a substantial
enhancement may make this energy large. If the laser resonator does not have a very
high Q-value, the power loss may not be tolerable. In this section we estimate the stored
energy. The absolute value of the energy will not be especially important or reliable, but
the dependence on radiation wavelength A should give a “back of the envelope estimate”
of how the difficulty of obtaining laser operation depends on A.

In an RF cavity, designed for operation, say, at a frequency of » = 500 MHz, or
A = 60 cm, there is only one, or perhaps several, modes of oscillation at the wavelengths
for which there is appreciable excitation. But at shorter wavelengths, say nanometer scale,
in a resonator having macroscopic dimensions, there are far more modes. There is an
easily derived relation between resonator volume V and n, the number of states per unit

frequency interval. It is
8w A%

n
c3

(10.6.1)

Quantum mechanically, this result corresponds to the standard rule of thumb that there
is approximately one state per volume of six dimensional phase space equal to k3. (Phase
space volume of spatial volume V' and a spherical shell of radius (momentum) hv/c and
thickness hAv/c is (47)(hv/c)?(hAv/c)V, and perhaps the other factor of 2 comes from
the two polarization states.)

To minimize the total energy, only states in an appropriately narrow frequency band
Av should be populated. For FEL’s operating with A &~ 1 micron, the ratio Av/v has been
in the range from 10™* to 1076, Let us accept the more optimistic value, Av/v ~ 1075,
and assume it to be valid for all A, (which is probably way too optimistic, as far as pushing

to short wavelengths is concerned.) The total stored energy W is then given by

W="  —h— =8r—— — —hv. (10.6.2)
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Note that this varies as the inverse fourth power of A. If V' is held fixed, to go from micron
scale to Angstrom scale entails a 16 orders of magnitude increase in stored energy. (Of
course the absence of mirrors at Angstrom scale wavelengths, all by itself prevents the
design that has been discussed here from working.)

Fig. 10.5.1 suggests that, rather than filling the resonator uniformly, it is appropriate
to build a wave packet that overlaps the electron bunch as perfectly as possible. This
permits us to set V to the volume of the electron bunch. For CESR the dimensions

. . —2 ~3 /104 ~ 10-8 AQ . 109
length/width /height are 4 x 1072/4 x 107°/10™*m or V =~ 10~°m, and 7 ~ 10

V Av he AQ 1078 he/e AQ
W=8r————=8r x107° : 10.6.3
"N AN ar ¥ A dn (10-6.3)
For operation at A = 1 A, this yields
10~° ~6 ., 10—9 4 13
W =8n 10-30 x 107° x 1077 x 1.24 x 10* ~ 3 x 10~° Joules. (10.6.4)

This suggests that an X-ray FEL will not be operating anytime soon at CESR.



Chapter 11.
Accelerator Correction

11.1. Introduction

It is essential that the X-ray beams emanating from a storage ring light source be ex-
tremely stable, and this requires the electron beams to be similarly stable. Because of the
numerous external lines, accelerator correction algorithms may be more complicated than
is required for colliding beam operation. One mathematical technique that has been de-
veloped especially by the light source accelerator community is known as “singular value
decomposition” (SVD) and this technique will be emphasized. Orbit smoothing in one
plane is emphasized as the prototypical application.

Orbit correction is accomplished by calculating and using a set of magnet steering
strengths that minimize (in a sense to be spelled out) the deviation of the closed orbit
from an ideal orbit. In early accelerators the main purpose of steering such as this was
to prevent beam particles from being lost by striking physical obstacles such as the beam
pipe. For high energy hadron colliders, because the aperture (the “dynamic aperture”) is
determined by magnetic fields there is a more stringent requirement placed on the steering
capability. The effect of off-axis passage of the closed orbit through a nonlinear element
(present for example in superconducting dipoles due to systematic, hysteric, persistent
currents) is the introduction of “feed-down”. When this feed-down is randomized by the
more-or-less random, closed orbit deviations, the result is a random multipole of the sort
known to reduce the dynamic aperture. Because of this it is necessary to pay more attention
to closed orbit deviations in the dipoles than is customary with smaller accelerators.

For the algorithm described in this paper it is assumed that commissioning of the
ring has proceeded to a point where first turn injection and a closed orbit have been
achieved. In the process of achieving this it is necessary to “thread” the beam through
“open sectors” such as transfer lines or sectors of the ring. Mathematically this means
that boundary conditions are to be satisfied at the beginning and end of the sector. But
once a closed orbit has been found, it is necessarily periodic, even with arbitrary errors

present. From then on the problem becomes mathematically one of satisfying periodic

- 249 -
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boundary conditions. While open sector methods tend to be especially sensitive to errors
near the ends, all elements are of comparable importance once a closed orbit has been
established. Mentioned briefly below is a method for concentrating attention to a limited
sector of a machine, such as an intersection region. This method can also be applied to
steering through transfer lines and establishing a first turn.

To be able to compensate the closed orbit one must have beam position monitors
(BPM’s) distributed more or less regularly around the ring; their purpose is to measure
local deviations. In describing the algorithm it is not necessary for the detectors to be in
particular locations; only that they are N; in number (where the index d (for detector)
with d = 1,2,...Ng is used to label them), that the betatron phases ¢4 and the Twiss
parameters o and 37 are known at these locations, and that the longitudinal coordinates,
measured along the ideal orbit, are sg. It is also necessary to have N, elements (a for
adjuster) whose strengths are to be set based on the detector readings to give a “best”
compensation. The standard lattice functions are presumably also known at these adjuster
locations. Though it is not the only possibility, we will describe only methods for which
“best” means a least-squares minimum solution. There will be at least as many, and
typically many more, detectors than there are adjusters. (Ng > N,)

For smoothing the orbit it is extremely convenient to be able to assume that the motion
is decoupled; i.e. one of the two normal modes of transverse motion is approximately hori-
zontal everywhere and the other is approximately vertical everywhere. Unfortunately, with
coupling errors of typical magnitude, this is only achievable by the use of skew quadrupole
correctors. These are to be adjusted using an algorithm much like the orbit smoothing algo-
rithm. Since the performance of this decoupling algorithm is also impaired by closed-orbit
errors, it is necessary to improve the situation by successive approximation, alternating
decoupling and orbit smoothing operations.

In the presence of errors the lattice functions will differ from the theoretical values on
which the orbit correction algorithm is based. To reduce the sensitivity to this effect in our
simulation we proceed the same way as is done in the control room; we set the tunes back
to their nominal values after every iteration. With the tune being given by an integral
over the inverse -function, this places a reliable constraint on the lattice functions. With

errors of the magnitude expected for high energy hadron colliders, the convergence of the
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closed-orbit-smoothing algorithms proves not to be seriously impaired by the use of ideal

rather than actual lattice functions and phase advances.

11.2. The Closed-Orbit Influence Function.

We define the closed orbit influence function as the closed orbit deviation at sq (where
there is a detector) per unit angular deflection at s, (where there is an adjuster). To
derive it one can first write the closed orbit deviation, at the center of a thin deflecting
element located at s, in an otherwise ideal lattice. The deflection causes a horizontal kink
Ax'(s4)/2 just before the thin element, and an equal kink just after it. In phase space
(with 2’ = dz/ds) the local closed orbit deviation is given by

Teo (Sa) =Bra IS_Q:/C% Az (sa) ( )
v 11.2.1
Sz
o) = = a0 22 52)

Here a,, and (., are Twiss functions, (), is the horizontal tune, S, = sin27(),, and
Cy = cos 2m(@),. In passing, it can be observed that the denominator factor 1—C, appearing
in these expressions causes blow-up for integer tune values. This orbit sensitivity is due to
an “integer resonance”. This not only prevents operation at integer tune values, but favors
operation well away from integers in order for the lattice to exhibit reduced sensitivity to
bend errors.

With the displacement = being continuous across the thin bend element and taking

account of the kink, the phase space coordinates just after the thin element are given by

Leo (3a+) = S_/C, x (Sa) ( )
r p 11.2.2
1l (sq+) = — ag IS—/C’ Az’ (s4) + AfCT(Sa)

Both of these are proportional to Axz'(s,). Since it has been assumed that the rest of the
lattice is ideal, the rest of the closed orbit is simply the pure betatron oscillation starting

with these coordinates. At location sg, the coordinates, divided by Az'(s,), are given by

(11.2.3)

[ Ca(d,a) S.(d.a) ;al/ 2 Bra2l
—5z ( ,CL) Ce (d’ a) O‘maﬁx /2 a}:c/z2 —ama% + %
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where Cy(d, a) stands for the cosine of the phase advance qﬁég from a to d and similarly
Sz(d,a) = sin qﬁflg. This formula can be understood as a sequence of three linear trans-
formations: first is a transformation from the initial Cartesian phase space frame to a
reference frame in which betatron motion is pure rotation, next the rotation through angle
¢§2, and finally transformation back to the Cartesian phase space coordinates. Completing

the matrix multiplications in Eq. (11.2.3) yields the result

X _ Zco (Sd) . Sm V Bmaﬁxd
Tda N 1= C, Cy (d7 a) + Sz (d? CL) 92

_cos (ux/2 — qﬁfl;) m'

Ny
2sin 5

(11.2.4)

As written, the adjuster is regarded as preceeding the detector, even in cases where sg < s,.

” in the lattice in evaluating qbéfl. If one prefers

This requires passing the “starting poin
one can avoid this by the replacement cos(pu;/2 — ¢3,) — cos(pg/2 —|¢7|) in Eq. (11.2.4).
There is a similar relation for 2/, which will not be useful since the detector at d measures
zq not ;. The function Tjg is the desired influence function. Though the indices a and
d appear symmetrically, they will be treated rather differently in subsequent formulas. In
particula d is never a free index—it is always summed over.

The entire discussion of smoothing the orbit horizontally can be take over to vertical
smoothing with just a change of symbols;

Y
TV _ cos (Hy/2#y 29 /ﬁyaﬁyd- (11.2.5)

251n7

11.3. Improvement of the Closed Orbit Using Steering Correc-
tors.

Formula (11.2.4), as well as applying to the adjuster elements (whose strengths are under
our control), can also be used to calculate the influence of the (unknown) steering errors
present in the lattice. All these deflections can be added to obtain an expression (valid to
lowest order in the angular deflections Az}) for the closed orbit deviation at sy. There is
no point, however, in writing out the error terms explicitly as they are unknown. Rather
all of the unknowns can be combined into a single term Ax;, the total error contribution

to the closed orbit deviation. Applying this formulation to write the closed orbit deviation
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at each of the N; detectors yields

N
vg=Azq+ Y TpAz, d=1,2,..,Ng (11.3.1)

a=1
In this equation the quantities pug, qbéfl, Bra, and B.q are known from the ideal lattice
model, Az, is measureable, and the deflections Az!, are controllable quantities, available

for improving the z; values.

To express Eq. (11.3.1) in matrix form we introduce a row vector of displacements
X = (z1,®2,...,2n,) and a column vector AX' = (Az, Az, ..., A$I]Va)T of adjustments.
With the influence functions arrayed in a matrix T having one column for every adjuster

and one row for every detector, Eq. (11.3.1) becomes
X = AX + TAX". (11.3.2)

The simplest (but unrealistic) closed orbit adjustment would have precisely one deflec-
tion error in the lattice, and an adjuster at the same location. In that case Eq. (11.3.1)
could be used with just one detector, placed almost arbitrarily, to determine the value
of Az!, needed to adjust z4 to zero. Because the compensating element is superimposed
on the error the orbit will then be correct everywhere. But, if the compensating element
were not superimposed on the error then the closed orbit, though correct at the detector
location, could not be expected to be improved elsewhere.

Orbit correction can also be based on localized “n-bumps” where n, typically 2, 3, or
4, is the number of steering elements in the bump. If two adjusters are located at points
separated by multiples of 7 in betatron phase, the kink due to the first element can be
cancelled by the second, thereby causing a central orbit excursion that vanishes except
between the two elements. Such a localized 2-bump can be used for local orbit smoothing.
Far more flexible, because the betatron phase intervals can be almost arbitrary, are “three-
bumps” made with three steering elements. It is possible to formulate a steering algorithms
that is based entirely on three-bumps. If the bumps are labeled 1,2, and 3, the error a:go)
at the center element can be canceled, while at the same time leaving the orbit unchanged
outside the three-bump region. These “few bump” correction schemes correct the orbit

locally, without running the risk of damaging the orbit elsewhere. This type of correction
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can be regarded as a special case of the algorithm that is to be described here, which
applies to any number of adjusters and detectors.

Realistically, the detectors are situated at locations unrelated to the locations of errors.
One possibility (still impractical) would be to have exactly the same number of detectors
and adjusters. In that case, from the known measurements AX, N, = Ny in number, the

deflection AX’ can be adjusted by solving the equations
TAX' = -AXT, (11.3.3)

One reason this method was said to be “impractical” is that it is not known whether these
equations are solvable. That is, the existence of T~! is uncertain.

A more general, and more robust, compensation procedure is to permit Ng; > N,—at
least as many, and typically far more, detectors than adjusters. In that case, since there
are more equations than there are unknowns, a procedure other than solving Eqgs. (11.3.3)
is required. We follow a routine procedure for such cases by recasting the problem as a
minimization problem, minimizing for example Zévjl :U?l. (In the special case that N, = Ny
this leads to the solution of the previous paragraph.) We will call the target positive-definite

function to be minimized a “badness function”, B;
Ng
/ / 2 T / nT
B(Azh, .., Axly) =) 27 =XX" = (AX + TAX') (AX + TAX')" . (11.3.4)
d=1

The functional dependence (Azf, ..., Ax?va) ascribed here to B emphasizes the fact that,

since we have control over the adjustments, we have (some) control over the badness.

11.4. Possible refinements

Another candidate badness function is Zévjl eq where ¢ = [z + (az + B2')?]/B is the
Courant-Snyder (C.S.) invariant. This weighting can be characterized as giving equal
weight to equal C.S. deviations. This choice cannot be used in any straightforward oper-
ational way however, since the slope z/, is measureable only indirectly. Next best might
be 22/B. At least for orbit smoothing of the long arcs of the accelerator this is unneces-
sary since most of the horizontal BPM’s are situated at points where the spread of beta
function values is not great. But special weighting can be applied to particular locations

in the lattice, and the subsequent formulas then acquire consistent factors.
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At this point it is appropriate to introduce some practical considerations and definitions
and to modify the interpretation of the formulas accordingly. In a computer model of the
lattice there is an “ideal” or “reference” orbit, having all local and global parameters
exactly correct. If errors are introduced into this model, there will be a distorted closed
orbit deviating from the reference orbit. The physical elements of the actual accelerator,
to be called the “as-built” accelerator, may exhibit large deviations (perhaps a centimeter)
from this globally perfect reference lattice. Locally, however, on the scale of several cell
lengths, the practicalities of survey and alignment will permit an orbit that is very smooth,
showing deviations that are considerably less than a millimeter from element centers.
One can visualize this curve being extended into a perfectly smooth, globally-slightly-
distorted curve passing close to the centers of all the magnet elements. This can be regarded
as a “sufficiently-ideal” orbit and will be called the as-built reference orbit. Provided
the magnet elements do not shift spatially it stays constant for all time, independent of
magnet powering. For accelerator operations it is deviation from this orbit that matters.
For better or for worse this must be lived with until another global survey or magnet
repositioning takes place. When simulating operations in the computer it would be possible
by introducing a random-but-smooth distortion, to model such locally small but globally
large deviations from the design reference lattice. Being a nuisance, this is not usually
done. Rather, we measure deviations from the as-built reference orbit in the accelerator
and refuse to distinguish them from the deviations from the design reference orbit in
the computer model. This accuracy of this procedure can be investigated and defended
provided a smoothness, or adiabatic condition is satisfied. From here on, when referring
to the as-built accelerator, we will skip all this qualification and simply use one of the
synonomous terms ideal orbit, or reference orbit, or central orbit. This means there is a
certain fuzziness in relationship between the actual orbit and its computer model; this is
an inevitable accompaniment to the realities of global equipment positioning. To model
performance degradation due to this in a computer simulation it would be necessary to

apply globally correlated errors.

In modeling random location errors it is necessary to specify the probability distribu-

tions of the errors. Except for random deviations depending on the anticipated achievable
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adjustment precision (say +0.5mm) the lattice quadrupoles will lie precisely on the just-
defined ideal orbit, and so will the BPM’s. Since quadrupoles and BPM’s are located
side-by-side, the practicalities of equipment positioning result in the relative position un-
certainty of quads and BPM’s being less yet (say +0.1mm). If the quads and BPM’s are
assigned random, uncorrelated, position errors at the £0.5mm level then this correlation
will not be properly modeled. For this reason the distributions of BPM displacements are
better regarded as being centered on the adjacent quads. Other correlations are common.
For example the “girder” design may be such that the chromaticity compensating sex-
tupoles and the BPM’s are mounted on the same beam and hence are accurately related.
Simulation codes should have the capability of modeling such correlations.

In specifying a badness function “the proof of the pudding is in the eating”. It is not
something that can be “wrong”; rather it is something that gives better or worse per-
formance, where performance refers to some measure of deviation. Different measures of
performance can be expected to favor different badness functions, and that is one basis for
choosing a particular function. As mentioned previously it is necessary to impose the op-
erational requirement that the badness function be measureable during actual accelerator
operations, using the digitized outputs of the BPM’s. Letting deP M he the displacement
of the d’th detector from the ideal orbit, the measurable quantities are X; = x4 — a:gp M.
We insist that the badness depend only on these quantities. In this paper we will hide this
complexity by simply redefining the symbol x; to stand for X; from this point on.

11.5. Least squares compensation

The conditions for minimizing the badness defined in Eq. (11.3.4) are

0B
= 0; =1,..., N, 11.5.1
aA‘T;ZL Y a bl I a ( )
To perform the differentiation we spell out B in terms of components (using the summation
convention)
0B _ _9 Az; + T;; Az’ (Az; + TipAx),) = 2T Ay + 2T, Ty Ay 11.5.2
8Aw{l_3A${l( i+ 1y 37])( i+ Lig mk)— ia AT + 2L4q 13 AT, ( )

To convert this back into a matrix equation it is necessary to treat rows and columns

consistently, as defined above. The result is

TIT AX' = —TTAXT. (11.5.3)
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This equation is curiously similar to Eq. (11.3.3)—in fact it results from left multiplying
that equation by T7. But we will see shortly that Eq. (11.5.3) is much more manageable.

Proceeding optimistically, we can “solve” Eq. (11.5.3) to obtain
~1
AX' = — (TTT) TTAXT. (11.5.4)

Assuming the inverse (TTT)! exists, this amounts to having “solved” Eq. (11.3.3). This

motivates the terminology “generalized inverse of T” for the combination
-1
G= (TTT> 7. (11.5.5)

G is also known as the *“Moore-Penrose inverse” of T. In case T should itself be

invertable we have

~1
(TTT> Tl — 771, (11.5.6)

so the generalized inverse and the regular inverse are identical in this case.

junk junk

Depending, as it does, only on the influence function, the elements of this matrix can
be calculated for the ideal orbit. They do not depend on errors or closed-orbit deviations
and can be calculated once-and-for-all in the beginning from the design lattice and used
in subsequent iterations even if the errors change. We also define a vector containing the

inhomogeneous terms in Eq. (11.5.1)
vY = (VGX) = - a0 ). (11.5.7)

This depends on the measured deviations; it is through this vector that the measurements
influence the corrections. Then, suppressing superscripts, Eq. (11.5.1) and its solution can

be written

TI'TQ=V, Q= (TTT) v (11.5.8)

One sets the adjusters according to this equation with the expectation that the orbit
will then be smoother. If the lattice is purely linear, success is assured and there is no
need to iterate as the solution (11.5.8) yields the “best-fit”. With nonlinearity and cross-
coupling one or two more iterations usually yield noticeable improvement. The possibility

of large deviations in regions with no detectors, unfortunately, always remains. Most
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accelerator correction algorithms are analogous to, or a variant of, or an improvement
upon, Eq. (11.5.8)

The use of Eq. (11.5.8) in setting adjuster values involves the inversion of the matrix
MX. Such an approach was once thought impractical for large accelerators due to nu-
merical difficulties or lack of computer resources. But for the SSC, the inversion of the
appropriate 420 x 420 matrix proved to be straightforward and quick (a few minutes on a
modest scientific workstation, 1990 vintage).

This “brute force” mathematical approach, the inversion of a large matrix, can be con-
trasted with “physics-motivated” iterated bump approaches in which many few-dimensional
local steering operations are performed. At some basic level it can probably be shown that
the final results of these approaches are mathematically equivalent as long as the same
figures of merit are employed, and the iterative procedures converge. Some considerations
that might favor one or the other approach are numerical robustness and relative immu-
nity to malfunctioning of a few detectors. It is found empirically that the brute force
matrix inversion approach is reasonably unaffected by a few dead detectors (which report
unrealistically small orbit deviations.) This result seems obvious to me, based on the gen-
eral formulation, with numbers of detectors and their location being arbitrary. Clearly,
though, there can be anomalously large excursions near broken detectors. It is also pretty
clear that malfunctioning adjustors need to be identified and removed from the algorithm.
BPM wiring errors that are equivalent to reversing the sign of the measured deflection
cause serious degradation of the closed orbit, and reversed adjusters are worse yet.

Within the formalism of using equations Eq. (11.5.7) and Eq. (11.5.8), considerable
flexibility remains since the detectors and adjustors can be allotted arbitrarily. For sector
compensation, say during first-turn steering, one can use only those detectors and adjustors
in the sector that the beam has successfully traversed. In TEAPOT, sub-families can be
defined to achieve this functionality. These sub-families can also be used to emphasize the
steering in critical sectors such as intersection regions. In this case it is useful to include
at least a few detectors from elsewhere in the ring in order to keep the closed orbit there
somewhat under control.

In planning for large accelerators various measures of orbit smoothness are possible.

One measure is the r.m.s. deviation of the closed-orbit from the ideal orbit. Another is
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the r.m.s. deviation of the dipoles from the closed-orbit. This can be used in providing
a measure of multipole feed-down in the dipoles—an effect whose importance has already
been mentioned. Yet another measure is the mean square deviation of the closed-orbit
from the ideal orbit, measured at the positions of the BPM’s. Except for a constant factor
this last measure is the same as the badness function B defined in Eq. (11.3.4). This figure
of merit will be misleadingly good, especially if there are equal numbers of adjusters and

detectors, in which case a zero badness value can be obtained.

We have been assuming, and will continue to do so for the time being, that the BPM
measurements themselves are free of errors. This is not necessarily realistic, especially for

low intensity beams.

11.6. Singular Value Decomposition

For homogeneous sections of an accelerator, with sensibly placed adjusters and correctors,
the procedure described so far is usually free of serious numerical complications. But it is
not hard to visulize ways it can fail and, even if that were not the case, it is appropriate
to apply sophisticated methods of numerical analysis in order to make the procedure as

robust as possible.

If there are more adjusters than detectors then the minimization equations are under-
determined and cannot be solved. Even if there are more detectors than adjusters it is

’ in some areas and

possible for the detectors to be placed such that there are “too many’
“too few” in others. Evidently two detectors at the same location are redundant, and two

detectors close together may be essentially redundant.

It is also possible for the equations to be undetermined because of degenerate adjuster
locations. Two superimposed adjusters obviously “fight each other”. Since it is only their
sum that affects the orbit, a correction algorithm, by making their signs opposite, can
try to turn them both on very hard. This can happen even when the adjusters are not
side-by-side. For example, two adjusters separated by an exact multiple of half betatron

wavelengths will appear degenerate if there are no detectors between them.

These sorts of misdesign can usually be diagnosed using “physics” when the algorithm

fails on their account. But one can be more confident if there are “mathematical” tricks
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that reduce the seriousness of degenerate detectors or adjusters and provide diagnostic

tools for identifying problems of this sort.
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